

Dynamics of Strapped Iron Porphyrin with a Carboxylate Function on the Electrochemical Performance of CO₂ reduction

Adrien Smith,^a Bernard Boitrel,^b Philipp Gotico,^c Zakaria Halime,^a Ally Aukauloo^{a,c}

[°] Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO, UMR 8182, CNRS), Université Paris-Saclay, 91400, Orsay, France; ^b Institut des Sciences Chimiques de Rennes (ISCR, UMR 6226, CNRS), Université de Rennes, 35042, Rennes, France; ^c Institut des Sciences du vivant Frédéric Joliot, Institut de Biologie Intégrative de la Cellule (UMR 9198, CEA, CNRS) Université Paris-Saclay, 91191, Gif-Sur-Yvette, France

Transforming CO₂ into valuable reduced forms of carbon is a strategy that is currently attracting the interest of both the scientific community and the industry. Converting and not only capturing CO₂ can be a way to recycle this greenhouse gas by introducing non-fossil fuel based C1 building blocks back into the carbon cycle. The design of new molecular catalysts for the reduction of CO₂ is therefore essential to better understand how to activate and reduce efficiently this stable molecule. Tetraphenyl iron porphyrins and derivatives have been shown to be efficient and selective catalysts for CO₂ reduction to CO.^[1] Introducing electron-withdrawing groups can lower the catalytic overpotential but at the expense of a lower turnover frequency.^[2] Cationic functions in the second coordination sphere of porphyrins showed greater improvement of both the overpotential and the catalytic rates,^[3] while negatively charged sulfonate groups resulted to a decrease in activity.^[4] Herein, the effects of electrostatic activator is revisited by synthesizing a strapped iron porphyrin holding a carboxylate function.^[5] It is found that the carboxylate moiety, which lies in the second coordination sphere of the reduced iron center, plays a beneficial role on CO₂ reduction, even though it is negatively charged. In presence of water, we found that the carboxylate-strapped porphyrin shifts the electrocatalytic performance to a high turnover frequency as the nonfunctionalized iron tetraphenylporphyrin, while keeping a lower overpotential as for the perfluorinated analogues. Electrochemical studies were undertaken to optimize the performance of the catalyst and determine its binding aptitude with CO₂ and the proton transfer process.

Figure: Sketches of the COO-strapped porphyrin and the assumed Fe-CO₂ adduct formed in catalytic conditions.

REFERENCES

^[1] Hammouche, M.; Lexa, D.; Savéant, J.-M.; Momenteau, M. J. Electroanal. Chem, **1988**, 249, 347-351.

^[2] Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Phys. Chem. C **2016**, 120, 28951–28960.

^[3] Khadhraoui, A.; Gotico, P.; Leibl, W.; Halime, Z.; Aukauloo, A. *ChemSusChem*, **2021**, *14*, 1308-1315.

^[4] Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. **2016**, 138, 16639–16644.

^[5] Hanana, M.; Arcostanzo, H.; Das, P. K.; Bouget, M.; Le Gac S.; Okuno, H.; Cornut, R.; Jousselme, B.; Dorcet, V.; Boitrel, B.; Campidelli S. *New J. Chem.*, **2018**, *42*, 19749-19754.

GDR 2023